Slideshow

القاهرة هي عاصمة جمهورية مصر العربية وأهم مدنها تقع القاهرة على جوانب جزر نهر النيل في شمال مصر باريس هي عاصمة فرنسا وأكبر مدنها من حيث عدد السكان. تقع على ضفاف نهر السين في الجزء الشمالي من البلاد في قلب منطقة إيل دو فرانس لندن هي عاصمة المملكة المتحدة وأكبر مدنها. تقع على نهر التيمز في جنوب بريطانيا روما هى عاصمة إيطاليا تقع المدينة في الجزء المركزي الغربي من شبه الجزيرة الإيطالية على نهر التيبر في إقليم لاتسيو الإيطالي طوكيو هي عاصمة اليابان، تقع على الجهة الشرقية لأكبر الجزر الأربعة للبر الياباني هونشو، وعلى الضفة الغربية لـخليج طوكيو وبالقرب من مصب نهر سوميدا  بكين هى عاصمة جمهورية الصين الشعبية ومن أكبر المدن فيها، تقع في الطرف الشمالي من سهل شمال الصين

قوانين مساحية تهمك

قوانين مساحية تهمك


1- وحدات المساحة

الفدان= 24 قيراط = 4200.83 متر مربع
السهم = 7.293 متر مربع
القيراط = 24 سهم = 175.035 متر مربع
الفدان = 1000 / 3 = 333 قصبه مربعه



مساحة الاشكال الهندسية

* مساحة المثلث = نصف القاعدة فى الارتفاع بمعلومية القاعدة والارتفاع
* مساحة المثلث = ح (ح-ا)(ح-ب)(ح-ج) تحت الجزر بمعلومية الاضلاع الثلاثة
ح = نصف محيط المثلث =( ا + ب + ج) مقسوما على 2
حيث ان( ا , ب , ج) هى اطوال اضلاع المثلث
* مساحة المثلث = نصف حاصل ضرب ضلعيه فى جيب الزاويه المحصوره بينهما ½ا ب جا ج = ½ ا ج جا ب = ½ ب ج جا ا
* مساحة المثلث القائم = نصف حاصل ضرب ضلعى الزاويه القائمه
*مساحة المثلث المتساوى الاضلاع = ¼ س² ×3 ? = 433.س تربيع
حيث س = طول ضلع المثلث



2- الاشكال الرباعيه

* مساحة متوازى الاضلاع = القاعدة فى الارتفاع
* مساحة شبه المنحرف = ( مجموع القاعدتين المتوازيتين على 2 ) مضروبا في الارتفاع
* مساحة المعين = نصف حاصل ضرب قطريه
* مساحة الشكل الرباعى = مجموع مساحة المثلثين الناتجين من توصيل احد قطريه



3- مساحة الاشكال الهندسيه المنتظمه

* مساحة اى شكل منتظم = نصف طول المحيط فى العمود النازل من المركز على احد الاضلاع

4- الدائرة

*مساحة الدائرة = ط نق2
* مساحة القطاع الدائرى = (ط نق 2 ن) مقسوما على 360 حيث ن الزاويه المركزيه
القطاع الدائرى هو جزء محصور بين نصفى قطرين وقوس من الدائرة


5- الإنحرافات

*الانحراف الدائرى هو عباره عن الزاويه من اتجاه الشمال الى الخط مقاسه فى اتجاه عقارب الساعة ويتراوح قيمته من 0 الى 360
*الانحراف المختصر ويمكن حسابه من الانحراف الدائرى وتتراوح قيمته بين 0 و 90 مع تحديد الربع الواقع فيه
- الانحراف المختصر فى الربع الاول هو نفسه الانحراف الدائرى
- فى الربع الثانى يتم حساب الانحراف المختصر من طرح 180 من الدائرى
- فى الربع الثالث يتم حساب الانحراف المختصر من طرح الدائرى من 180
- فى الربع الرابع يتم حساب الانحراف المختصر من طرح الدائرى من 360
* الانحراف الربع دائرى يحسب هذا الانحراف من اتجاه الخط الشمال او الشرقى او الجنوبى او الغربى الى الخط نفسه


6- قوانين حساب الاحداثيات

A=E1-N1 النقطة
B=E2-N2 النقطة
* لحساب المسافة بين A وB بمعلومية الاحداثيات لكل من النقطتين
E1-E2)²+(N1-N2)²) الكل تحت الجزر= Dist
* لحساب الانحراف أو الزاوية للضلع AB فرق الاحداثى = فرق E مقسوما على فرق N
* حساب إحداثى نقطه مجهولة الإحداثيات من نقطة معلومة
E = E1 ± DIST X SIN A
N = N1 ± DIST X COS A
حيث ان E1 و N1 هى النقط المعلومه


7- لإيجاد المسافه بالميزان


ياخذ قراءة الشعره السفلى والعليا ويتم طرحهما من بعض والناتج يضرب فى 100 ينتج المسافه


8- حساب مساحة المثلث بمعلومية الزوايا

A / SIN A = B / SIN B = C / SIN C
حيث اضلاع المثلث A- B- C
**المثلث القائم الزاويه:
AC ²=(AB)²+ (BC)² الوتر
(نظرية فيثاغورث)

BC²=(AC)²/ (AB)²
AB²= ( AC)²/ (BC)²
-لايجاد الزاوية(‹C) نطبق القانون الاتى ظا (‹C)= المقابل(AB)/ المجاور(BC)
-لايجاد الزاوية(‹A) :طريقتان
الأولى: يتم جمع زاويتى C&B القائمة ثم طرحهما من 180
الثانية: ظا(<A) =المقابل (BC)/المجاور(AB)

ملحوظة: فى المثلث القائم الزاوية اذا علم فيه ضلعان يمكن منهما ايجاد الضلع الثالث وزوايا المثلث أيضا



المثلث الحاد الزوايا


هناك عدة حالات لحساب الأضلاع والزوايا فى المثلث الحاد الزوايا
أولا: اذا علم ضلعان والزاوية المحصورة بينهما نطبق العلاقة الأتية
A¯= ?B¯² +C¯²*2BC×COSِA

مما سبق اوجدنا ¯ A


َثانيا: فالاضلاع الثلاثه معلومه وزاوية A معلومه ايضا ويتبقى زاوية B , C مجهولتين
لايجاد اى منهما نطبق هذة العلاقه الاتيه
¯ َ SIN A/A¯=SIN B/B¯=SIN C/C
فمثلا لايجاد الزاوية B نطبق المعادلتين الأولى و الثانية
SIN A/A¯=SIN B/ B¯b
بضرب الطرفين فى الوسطين ينتج الأتى
SIN B=B¯×SINA\ A¯A
وكذلك زاوية C من مجموع الزاويتين ثم طرجهما من 180

ثالثا: الأضلاع الثلاثة معلومة والزوايا الثلاثة مجهولة نطبق القانون الأتى:-

B¯²+C¯²*A¯²/2AC
=
COS A

C¯²+ A¯²- B¯²/2A¯C¯
=
COS B

B ¯²+A¯²- C¯²/2A¯B ¯
=
COS C


لا تنسى دعمنا بلايك إن أفادك الموضوع و شكرا

ليست هناك تعليقات:

إرسال تعليق